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This paper proposes an automated solution system to assist
with Real-Time Operations and automatically identify and
report on issues with data transfer, archive, and manipulation
throughout the Ground Data System (GDS) process. As the
Mars Curiosity Rover transmits data to the JPL Ground Data
System (GDS), it frequently observes data loss and corrup-
tion, requiring re-transmits from the rover and Ground Data
System Analysts (GDSA) to monitor the downlink process.
As new missions are launched, the GDSA team redistributes
analysts to these new missions, causing shortages in previ-
ous missions. The prior state of GDS issue detection and
resolution was largely manual. GDSAs receive email alerts
when something goes wrong, but it’s not always clear what
the exact problem is or how to fix it. This paper presents
machine learning and deep learning based approaches to
automate and optimize the detection of data loss. We first
created a pipeline to automatically accumulate data from
the telemetry databases (MAROS, Telemetry Data Storage,
and GDS Elastic Search Database) in the downlink process.
With our newly created datasets, we perform feature selection
to supplement the GDSA understanding of the downlink
process and provide supplemental analysis on the importance
of different features. We implemented various supervised
machine learning-based models and evaluate their accuracies
to identify a downlink process is complete or incomplete. We
utilize fast hyperparameter optimization methods that allow
our models to quickly be re-trained, allowing them to quickly
be tuned and optimized on daily incoming data in near real
time.
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1 INTRODUCTION

The Automated Data Accountability for Missions (ADAM)
diagnoses data fidelity issues accurately and automatically
using data-driven algorithms. During the operation time of
a Mars Rover mission, the Rover sends data from the surface
of the Mars to Earth. This data travels at the speed of light
but can experience several types of distortions as it travels

∗This project was performed while the author was a research intern at JPL.

through space such as cosmic events like solar flares or exotic
particles can damage information on any of the platforms this
data is relayed through, and any issues with the hardware or
software onboard can cause more errors [2]. Any interruption
in the data stream, whether due to rotations of planets or
objects passing through the transmission on its way back to
Earth, will often corrupt the critical science and operational
information the mission depends on, see Figure 1.

ADAM is an autonomous system [1] that improves reliability
and productivity while reducing risk and operational costs
and potentially lowering development costs. ADAM will
eventually function with minimal human intervention and
supervision through Augmented Intelligence (AI). ADAM
will allow real-time operations to run smoothly by monitoring
Telemetry Data Storage and Ground Data Systems (GDS)
machines to predict, recognize, and resolve issues and alert
Ground Data Systems Analysts (GDSA).

The Mars Science Laboratory (MSL) Real-Time Operations
team at NASA’s Jet Propulsion Laboratory monitors the
downlink process of telemetry data from the Mars Rover [4]
back down to Earth. The current MSL downlink process
includes the Mars Orbiters, the Deep Space Network (DSN)
[5], JPL Data Control, and MSL’s GDS [6]. During the
transmission of data through this process, time stamps, data
volumes, and other metadata are recorded to make sure the
data is being transmitted successfully. However, there are
frequent losses in data as it is sent through these multiple
locations, which sometimes require re-transmissions by the
rover. There is a need for a better understanding of the cause
of data loss and re-transmission, which can help the GDSA
team better determine the root cause of the issues in the GDS.

The GDSA team is looking for a set of schemes to help
automate and optimize the detection of data loss in the
downlink process of telemetry data from space and particular
Mars missions. As new missions are launched, the GDSA
team redistributes analysts to these new missions, causing a
shortage in previous missions. As a result, they are looking
for technologies like augmented intelligence [11, 12] (i.e.
machine learning extends human capabilities) to increase
the performance of their monitoring tasks and to reduce
their staffing needs. In this regard, reasoning-based machine
learning approaches are particularly useful, as they can learn
abstract and relational features in large datasets such as data
transmission metadata. Although the GDSA team has an
expert understanding of the feature space, machine learning
algorithms allow the model to possibly learn other important
features that are obscure even to the analysts. Supervised
machine learning models [8, 31] can learn patterns from the
historical data and generalize their predictions on new data.
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These models can be applied to determine whether future
Mars Rover data transmissions are corrupted and require re-
transmission based on the recorded historical data. In this
paper, we experiment with various supervised learning ap-
proaches to detect missing data in the MSL downlink process.

Real-time operations can run more smoothly by monitoring
GDS machines and leveraging historical data from the MSL
downlink process. In this setting, machine learning models
can predict, recognize, and alert the GDSA of any incorrect
and irregular behavior [4, 14, 47]. Therefore, the use of ma-
chine learning models has become prevalent in the analysis
of data from projects in space [7, 13, 16, 17]. However, the
frequent inability of scientists to deeply understand these
models is problematic [18–22] and potentially a bottleneck
to their applications. Scientists and analysts dislike machine
learning methods that serve as black box modules, as they
do not give further intuition or justification for the classi-
fication task. Thus, there is a need for opening this black
box and understanding why such machine learning methods
work. In fact, in many situations explainable but slightly
more accurate models are preferable to more accurate but
unexplainable models. In supervised learning, several works
suggest that explainability is related to trust [25], where trust
refers to model’s performance, robustness, or ability to detect
a causality between features and labels.

In this work, we compare the results of different supervised
learning models to the existing state of the art of GDSA
software and analysts’ performance.

In this context, finding the best setting for each supervised
learning scheme is a necessary preliminary step since the final
performance of each method is highly sensitive to the choice
of a certain number of hyperparameters (HPs). Methods such
as SVMs need to tune only a small number of HPs compared
to deep neural networks where different aspects are taken
into consideration from the structure or architecture of the
network, from how the DNN learns from the training data,
etc. These hyperparameter optimization processes often rely
either on exploiting prior knowledge on the problem or on
using sophisticated algorithms to quickly and efficiently find
an optimum configuration.

The paper is organized as follows; following the introduction,
Section 2 provides background for the data transmission
issue and an overview of the problem statement. Section 3
describes the proposed approaches to the data accountability
problem. Then, the adopted algorithms are outlined in more
detail in Section 4, and a discussion of how to make the
methods more explainable is provided. Section 5 presents an
analysis and comparison of the performance of the proposed
machine learning strategies. Finally in Section 6, we high-
light our important performance and explainability results
and state the larger-scale impacts of our methods.

2 MSL’S DATA ACCOUNTABILITY
PROBLEM

Mars Rovers, like Curiosity and Perseverance, enable in-
depth exploration of the Martian surface and send its data
to Earth. The Mars Science Lab Real-Time Operations
team encounters a variety of challenges in extracting data
and maintaining the operations of the Curiosity rover. The
downlink process to receive the rover’s data transmissions
is complicated; as seen in Figures 1. A small error in data
transmissions when operating on Mars or another planet can
lead to critical failure. The operational data, information

about rover itself, and scientific data, data captured from
Mars surface, follows a multi-stage transmission path: from
the rover to satellites orbiting Mars, to Deep Space Network
stations back on Earth, and finally to Mission Control. Data
can be interrupted or corrupted at any of these stages, limiting
the data’s usefulness. The ground analysts must scour this
deluge of downlinked data to find these interruptions, deter-
mine their root causes, and correct them before sending any
new commands, like moving or using an instrument [2].

Figure 2 shows the process of sending telemetry data
recorded by the rover back to the MSL team. First, the
Curiosity Rover sends data to one of the Mars Orbiters. Then,
the orbiter sends the data to one of the Deep Space Network
stations. Afterward, the data is sent to the Jet Propulsion
Laboratory (JPL), where it is received by Data Control and
stored as transfer frames. Finally, the MSL team receives the
data and converts the frames into packets and data products.
GDSAs report the total data volume of the downlink in
megabits [49].

We see in Figure 2 that the high-level architecture for the
Mars Science Lab downlink process contains many different
checkpoints and locations. Thus, there are many places where
data can be corrupted or transmission can be interrupted.
When problems occur, it is often difficult to determine the
root cause, leading to the infamous question “Where is my
data?”. When a downlink is unsuccessful, it can take several
hours for the GDSA team to diagnose the cause of an incom-
plete pass and request a re-transmission. By monitoring the
MSL Ground Data Systems and using classification, we can
determine when data is lost but not what happened and why
it was missed.

In the downlink process, we record the metadata about each
transmission of data at each location in Figure 2. These
locations that store metadata are the Mars Relay Operations
Service (MAROS) [15, 24], Telemetry Data Storage (TDS),
and GDS Elastic Search Database. The GDSAs view these
metadata to determine whether the data is being successfully
transferred through the downlink process (complete passes)
or not (incomplete passes). In this work, similar to the
GDSAs, we curate a dataset of metadata from the MSL data
sources to train supervised learning algorithms to detect when
a downlink process is a complete or incomplete pass.

For our dataset creation, we built a data collector that gathers
raw data from each of the three data sources and a signal
processor that computes the important features from the raw
data, which we use to train machine learning models.

The GDSA Dashboard currently automates the identification
of complete and incomplete downlink passes [26]. Table 1
shows the performance of the existing GDSA labeler and the
corresponding confusion matrix. In this paper, we aim to
improve the accuracy and F1 score of the GDSA Dashboard
platform so that it can be used more reliably in future mission
operations.

Table 1 shows the performance of an experienced GDSA
performance on the MSL’s downlink passes with 9547 data
points. The performance of the GDS labeler for incomplete
are measured using precision, recall, f1-score defined as
follows:

precision =
|downlink passes correctly labeled as incomplete|

|downlink passes|
,

(1a)
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Figure 1. A schematic illustration of Rover’s telemetry data transfer pipeline.

Figure 2. High-level architecture of the Mars Science Lab Downlink Process.

Table 1. Accuracy of the Ground Data System Analyst
(GDSA) Dashboard Labeler [49].

Approach GDSA
Complete (+1) Incomplete (-1) Total/Avg.

Precision 0.95 0.75 0.91
Recall 0.97 0.55 0.92

F1-score 0.95 0.64 0.91
no. pts 8287 1260 9547

recall =
|incomplete passes are labelled as incomplete|

|downlink passes|
,

(1b)

f1 = 2
precision× recall
precision+recall

. (1c)

For example, when the GDSA gets the precision score of 0.75
on incomplete passes that implies that 75% of the GDSA
passes that were predicted as incomplete were correctly
labled. Also, when the GDSA gets the recall score of 0.56 for
incomplete passes that implies that 56% of incomplete passes
are labelled as incomplete.

GDS labeler’s objective is to identify the situations that the
downlink pass has not transferred successfully; as a result,
the

In the following section, we compared the accuracy of the
proposed approaches with the GDSA dashboard labeler’s
performance.

3 DATA AND FEATURE ENGINEERING

In this work, we used a dataset consisting of downlink data
from Sol 2 337 to Sol 2450 from the Curiosity Rover (i.e.,
MSL downlinks in the year 2019-20). We utilized this dataset
to evaluate different models’ performance and determine for
a given downlink pass if a significant portion of the data
transmission was missed.

The overview of the data pipeline is briefly described in
Section 2. We collected metadata 3 from the three different
data sources in the downlink process using internal JPL APIs.
As shown in Figure 2, MAROS, Telemetry Data Storage
(TDS), and the GDS Elastic Search Database are the three
different sources that store the metadata in the downlink
process. In our dataset, data is transferred from Mars to Earth
using six orbiters. In each data transfer, MAROS receives
metadata from the Mars orbiters, TDS from JPL’s ground data
systems, and GDS from the GDSA Team’s data processing.
These API’s return data volumes, start and end time of data

2a Sol refers to the duration of a solar day on Mars [43].
3Metadata is data that provides information about MSL data that is sent back
to the Earth and is captured by the sensors for the scientific discoveries.
Metadata is data about MSL data.
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transmission, information about orbiter height and location,
and other important features. For this study, we created a
data collection and processing pipeline that queries each API
and for all the data from a given Sol. In this pipeline, we
combine the three sources of metadata (MARSO, TDS, and
GDS) into one dataset by matching the downlinks pulled from
each of the three sources. This process resulted in 9547 data
points, which is the total amount of data that was available
during the preparation of this paper. Although, the dataset
may look small, particularly for deep neural network models,
this automated pipeline gathers more data everyday, which
helps to increase the performance of our machine learning
models as more metadata is collected.

After collecting and merging our data, we use a sensitivity
analysis scheme in the signal processing stage to compute
the most relevant features of the metadata. In the valida-
tion process, we consulted with subject matter experts (i.e.
Ground Data System Analysts) to gain prior knowledge about
feature importance. Also, we calculated the disparities in
data volumes between the different locations and between
the actual and predicted volumes. Then we include both the
differences in times and volumes as well as the raw amounts
in our metadata. We construct one-hot vectors to represent
from which Mars Orbiter the metadata was transmitted and at
which Deep Station Network (DSN) station the metadata is
received.

4 METHODOLOGY

This section presents the supervised machine learning algo-
rithms that are investigated to identify complete and incom-
plete downlink passes.

Supervised learning models

A Supervised learning method is an algorithm that learns to
map an input vector to a quantitative output for a regression
problem or a qualitiative output for a classification problem,
by training on a set of labeled data. The most commonly
used models for classification are Logistic Regression (LR),
Support Vector Machine (SVM) [39, 40] and Deep Neural
Network (DNN). For the description of these approaches, we
encourage the reader to review [23, 31]. We provide a brief
explaination of the DNN approach.

Deep Neural Network (DNN) 4 models [31] use multiple
fully-connected layers with nonlinear activation functions
to learn the function mapping data points to their correct
labels. With sufficient training and a sufficient number of
parameters, DNNs are more robust to noise and perturba-
tions in a dataset, compared to other supervised learning
methods. DNN approaches are particularly attractive in
this application, as the large number of parameters help
the networks learn abstract and relational features from a
complex dataset. They can augment the GDSA team’s expert
understanding of the feature space, by possibly learning other
important features that are obscure. DNNs can utilize these
learned relations to make accurate predictions on new data.
Therefore, they can determine whether future Curiosity rover
transmissions are corrupted and require re-transmission based
on patterns learned from recorded historical data.

The drawback of DNNs is that there are many hyperparame-
ters that significantly impact the performance of the network.

4Neural Networks models with more than five hidden layers are considered
as deep models.

These hyperparameters are problem specific and dataset spe-
cific and are computationally expensive to optimize. Since
DNNs are significantly larger than other methods like SVMs,
they require a much larger amount of data and much more
training time. In many situations, large quantities of labeled
training data can be expensive to obtain. In addition, these
models are less explainable and in many applications are
used as blackbox models, which makes them less attractive to
scientists. In recent years, the machine learning community
has attempted to make deep models more explainable with
works such as the XAI (eXplainable Artificial Intelligence)
program by DARPA [44].

A simple feed-forward DNN model (FF-DNN) to perform
binary classification on our dataset can be cast as

ŷ = fθ(x)

where x is the input features, y is the label, θ are hyperpa-
rameters of the model fθ representing the result of passing
the input x through the layers of the DNN. Each layer l of the
network contains neurons connected to all the neurons of the
next layer through weighted arcs. The input of the next layer
is the result of the linear combination of the current layer and
said weights. This combination goes through an activation
function φ(.) to introduce a non linearity. For more detailed
discussions on DNNs, see [31].

We use a weighted binary cross-entropy loss function

L(y, ŷ) = −
∑
i

β0 (1+ŷi) log(1+yi)+β1 (1−ŷi) log(1−yi),

(2)
where β0 and β1 are the weights propulsion to the number of
passes in complete pass , considered as 1, or incomplete pass
that is considered as−1. This loss function helps us to reduce
the effect of the class imbalance.

However, the performance of a FF-DNN can be effected by
the its architecture in a specific problem and is dependent
upon the choice of a set of hyperparameters (HPs), e.g., the
architecture of the deep learning network, forms of activation
functions, regularization coefficients, and the choice of the
optimizer. In practice, these hyperparameters are usually
selected with grid search or from prior experiments on similar
problems. The selection and initial setting of these hyperpa-
rameters critically impacts the performance of deep learning
networks in terms of quality of solution and training time
required [32]. To compute the network hyperparameters for
a FF-DNN with five hidden layers, we can solve a blackbox
optimization problem that minimizes a possibly nonconvex
function, defined as with the feasible domain in a hyper-
parameter space that is a simple convex region bounded by
linear inequality constraints [33–35]; In this study, this task
is carried out by the ∆-MADS algorithm described in the
following section.

Brief overview of ∆-MADS method

The HPO problem can be framed as a blackbox one. The
blackbox represents the code that takes the hyperparameters
as input, builds, trains and tests the corresponding network
and returns as measure of performance as the objective value
to be minimized. By doing so, derivative-free optimization
methods can be applied. The ∆-MADS algorithm [38] is
a combination of two DFO schemes: the local refinement
of the MADS algorithm [37] and the global search of ∆-
DOGS [36]. At each iteration k, MADS defines a mesh
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Mk around the current incumbent xk and evaluates a set of
candidates pki ∈ Mk chosen along search directions that
defines a positive basis. MADS allows to plug in a global
search strategy without losing its convergence properties as
long as 1) every sampled point is projected on the mesh and
and 2) each iteration is guaranteed to evaluate a finite number
of candidates. Delaunay-based derivative-free optimization
via global surrogates [36], dubbed ∆-DOGS, is a generalized
family of surrogate based optimization algorithms that decou-
ples the task uncertainty model of surrogate from the surro-
gate model unlike most of the surrogate based optimization
schemes such as Bayesian optimization. ∆-DOGS is globally
provably convergent for the optimization problems where
the Lipschitz bound of the objective function is bounded
[33]. It was shown that for the even the problems where
these assumptions are not true that ∆-DOGS can find an
optimal solution. In the paper [38], the authors show that ∆-
MADS finds efficient DNNs quicker than other optimization
schemes, including its two components individually. It is
therefore the algorithm selected to carry out the HPO of the
DNN considered in this study.

5 RESULTS

In this section, we evaluate some supervised learning
schemes’ performance and the DNN approach of Section 4
on the dataset described in Section 3. A naive measure of
a classifier’s performance is accuracy, which is the number
of times the classifier correctly predicted the label of a pass
divided by the total number of passes. Since our complete
and incomplete passes are not balanced, to better understand
classifiers’ performance, the overall performance is reported
using precision, recall, F1-score, and accuracy for both in-
complete and complete passes.

Understanding the behavior of DNN

To understand the behavior of the DNN, we visualized a
pattern of data in one of the hidden layers with 16 dimension.
We used t-SNE [48] to project this into two dimensions
to visualize, as shown in Figure 3. t-SNE model with a
perplexity of 30, a learning rate of 200, and 1000 iterations
was used.

Figure 3. Latent space projection of middle hidden layer
in DNN on a sample data with t-SNE. The red points

represent complete passes and the blue points represent
incomplete passes [49].

Figure 3 illustrates that the complete passes can be char-
acterized into three different classes. We found that these
three classes are associated with different data resources such

as transmission of data from different orbiters (TGO, ODY,
MRO, MVN) to DSN and other types of transfer in the GDS
data described in [49].

Using this observation, the metadata available for this study
was split into three separate classes of TGO, ODY, and MRO
and evaluated separately. The FF-DNN in this situation
achieved higher performance compared to using all classes.
The recall on the incomplete passes in this situation was 0.78
versa the recall of 0.52 in the one class model, the recall
on the complete passes achieved 0.99, the precision score
on incomplete passes 0.85, the precision score on complete
passes 0.99, the F1-score score on incomplete passes 0.90, the
F1-score score on complete passes 0.99. On the test dataset,
the model achieved 0.96 accuracy score. When splitting the
test results by orbiter, we saw that there was an accuracy
of 0.96 on MROs, 0.98 on TGO, and 0.96 on ODY. The
overall accuracy of the previous FF-DNN was 0.91 accuracy
similar to the GDSA. But, the t-SNE visualization helped us
to split the data into different groups and evaluate each model
separately. The performance of FF-DNN could improve as
GDS collects more data.

Machine learning-based labeler

We evaluate several supervised machine learning methods
for improving the performance in ADAM. Each datapoint
includes categorical one-hot vectors that consists of 42 fea-
tures, where 24 of those are categorical features and 18 are
continuous features representing the differences in data loss
in each communication segment. All the features in the
dataset are normalized with z-score normalization [49]. A
detailed discussion of input features for each methodology
can be found in [49].

Table 2 shows the performance of the machine learning ap-
proaches that perform better compared to the existing GDSA
Dashboard labeler shown in Table 1. To study the perfor-
mance of the machine learning based classifier, we first split
the data to 90% of it as a training set (8592 passes) and 10%
of it as a test set (955 passes). We used a stratified split to take
into account the class imbalance. The training data is further
split into training data and validation data, using 10-fold cross
validation, to find the best hyperparameters for each classifier
using a grid search and derivative-free optimization methods
[33,35]. Then the classifiers are evaluated using the 10% test
data that is withheld.

The FF-DNN architecture consists of five dense layers with
a dropout rate of 0.1 between each of the first four layers.
Each hidden layers used ReLU [27] as its activation function,
and sigmoid was applied on the output layer to compute the
probability of success. In order to find the architecture of the
network we used the hyperparameter optimization technique
described in [35]. We change the number of nodes in each
layer and then we tuned the dropout rate and learning rate.
Our observation was the network in this application was more
sensitive to the dropout rate and learning rate compared with
the number of nodes in each layer. The network was trained
for 400 epochs with a batch size of 20, with data randomly
shuffled between each epoch. A learning rate of 0.0042 and
SGD were used to update the model’s weights.

The performance of different methods is compared in Table 2
in order to identify complete and incomplete downlink passes
for MSL data from Sol 337 to Sol 2747. The training data
includes 9547 datapoints, which 1260 are incomplete, and
8287 are complete passes. We used 118 incomplete and
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Table 2. Comparison of different approaches’ accuracy on the MSL dataset. 1: Complete pass and -1: Incomplete pass. Avg.:
Average performance, and W/Avg.: Weighted Average performance based on the number of labels in each class. Algorithms

are LR: Logistic Regression classifier, SVM: Support Vector Machine, GNB: Gaussian Naive Bayes, DNN: Deep Neural
Network, HPO-DNN: optimizing the hyperparameters of DNN with [38],

Metric Precision Recall F1-score Accuracy

Alg. 1 -1 Avg. W/Avg. 1 -1 Avg. W/Avg. 1 -1 Avg. W/Avg. Score
LR 0.92 0.91 0.92 0.92 0.99 0.38 0.69 0.92 0.95 0.53 0.74 0.90 0.92

SVM 0.95 0.43 0.69 0.88 0.87 0.68 0.77 0.85 0.91 0.53 0.72 0.86 0.85
GNB 0.90 0.47 0.69 0.61 0.96 0.27 0.61 0.87 0.93 0.34 0.64 0.85 0.87

FF-DNN 0.93 0.69 0.81 0.74 0.97 0.52 0.74 0.91 0.95 0.59 0.77 0.90 0.91
HPO-DNN [38] 0.97 0.78 0.87 0.91 0.90 0.82 0.86 0.89 0.93 0.80 0.87 0.90 0.92

837 complete passes to validate our results, which in the test
set size is 955. Each method’s results are averaged to be
comparable with the GDSA analyst reports summarized in
Table 1.

Discussions

In all cases, the supervised machine learning labelers out-
perform the existing GDSA dashboard labeler. The lack of
explainability for machine learning based methods is the main
concern of GDSA in using these approaches. We can see
in the Table 2 approaches that are explainable and relatively
simple such as Logistic regression (LR) and Gaussian Naive
Bayes (GNB) [45] have even lower recall score for the incom-
plete downlink passes compared to the GDSAs. However,
such a schemes report high accuracy score which can be
misleading.

As we saw in Table 1, the HPO-DNN has 92% accuracy and
in general outperforms the other approaches except the Lo-
gistic Regression (LR). The recall of the HPO-DNN classifier
on incomplete classes is 82%, which dramatically improves
upon the 56% recall of the GDSA Dashboard Labeler on
incomplete passes. We used the implementation available in
[45] to validate our results.

We can see in Table 2 that LR has higher recall performance
on complete passes compared to other approaches, but it is
less reliable for the incomplete passes. Although approaches
such as LR, SVB, and GNB labelers are more explainable
compared to DNNs, the overall performance of these methods
are lower than DNN.

Overall, when comparing these values to the precision, recall,
and F1-score in Table 1; in most cases, we can see a signif-
icant improvement on the current GDSA dashboard labeler
using supervised machine learning labelers.

The results presented in this work and our previous related
studies [38,49] convinced GDS for MSL to leverage machine
learning-based methods in the operation of MSL. Our frame-
work can provide explanations on ”why the data is missing”
to the GDSA by sensitivity analysis about which features
contributed the most to making a downlink unsuccessful
[38, 49].

6 CONCLUSION AND FUTURE WORK

This work demonstrated various supervised machine learning
algorithms’ performance to classify a downlink as complete
or incomplete that can be used in ADAM for Mars Rovers.
This work introduced a framework for machine learning-

based labelers that can assist the GDSA analysts in their
work. We implemented this work in the GDS MSL software
to investigate data volume reduction in MSL daily opera-
tions. Our work simplified and partially automated the labor-
intensive and manual task of a GDSA analyst; thus, a new
GDSA member can respond to the Ground Data System’s
issues with shorter training time.

In future works, we will include identifying more data
sources in the downlink process and identifying the presence
of an issue and the location where the issue occurs. In
addition, we will experiment with generative neural network
models to increase the robustness our data volume detectors
for the operation of MSL and other flight missions.
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